Journal of Organometallic Chemistry, 327 (1987) 357–363 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ÜBERGANGSMETALL-SILYL-KOMPLEXE

XIX *. Mn,H,Si-DREIZENTRENBINDUNG IN KOMPLEXEN MIT PHOSPHINOETHYLSILYL-CHELATLIGANDEN

U. SCHUBERT*, K. BAHR und J, MÜLLER

Institut für Anorganische Chemie der Universität, Am Hubland, D-8700, Würzburg (B.R.D.) (Eingegangen den 22. Dezember 1986)

Summary

By a photochemical reaction of $MeCpMn(CO)_3$ with $Ph_2PCH_2CH_2SiHR_2$ (R = Me, Ph), phosphine complexes $MeCp(CO)_2MnPPh_2CH_2CH_2SiHR_2$ (1) formed initially, yield $MeCp(CO)(Ph_2P)Mn(H)SiR_2CH_2CH_2$ (2) upon further irradiation. In 2 the *cis*-arrangement of the phosphine and the silyl ligand is enforced by linking the two moieties together. X-ray structure analysis of 2a (R = Me) shows, that the Mn,H,Si three-center bond is not significantly influenced by this arrangement of ligands.

Zusammenfassung

Durch photochemische Umsetzung von MeCpMn(CO)₃ mit Ph₂PCH₂CH₂SiHR₂ (R = Me, Ph) werden erst die Phosphin-Komplexe MeCp(CO)₂MnPPh₂-CH₂CH₂SiHR₂ (1) gebildet, die bei weiterem Bestrahlen MeCp(CO)(Ph₂P)Mn(H)-SiR₂CH₂CH₂ (2) ergeben. In 2 wird durch Verknüpfung von Phosphin- und Silyl-Ligand eine *cis*-Anordnung der beiden Reste erzwungen. Wie die Röntgenstrukturanalyse von 2a (R = Me) zeigt, wird die Mn,H,Si-Dreizentrenbindung dadurch nicht entscheidend beeinflusst.

Im Zuge unserer Untersuchungen zur Mn,H,Si-Dreizentrenbindung in Komplexen CpL₂Mn(H)SiR₃ haben wir auch eine Reihe phosphin-substituierter Komplexe MeCp(CO)(PR'₃)Mn(H)SiR₃ (MeCp = η^5 -CH₃C₅H₄) hergestellt und charakterisiert [2,3]. Dabei werden ausschliesslich Komplexe der Geometrie A erhalten, in denen das Wasserstoffatom zwischen PR'₃- und SiR₃-Ligand lokalisiert ist. Dies dürfte die sterisch günstigste Anordnung der Liganden sein, doch können auch elektronische Effekte nicht ausgeschlossen werden.

^{*} XVIII. Mitteilung siehe Ref. 1.

Wir fanden nämlich in phosphin-substituierten oktaedrischen Hydrido-Silyl-Komplexen des Eisens, dass der Hydrid-Ligand die *trans*-Position zu einem Carbonyl-Liganden, der Silylrest dagegen zu einem Phosphin-Liganden bevorzugt [1,4].

Um herauszufinden, ob bzw. wie sehr die Stellung des Phosphin-Liganden die Mn,H,Si-Dreizentrenbindung beeinflusst, haben wir Komplexe der Geometrie **B** gezielt hergestellt. Wir berichten in dieser Arbeit über Verbindungen, in denen die *cis*-Anordnung von R'_3P und R_3Si durch Verwendung von Phosphinoethylsilyl-Chelatliganden erreicht wurde.

Synthese der Komplexe

2a, **b** können photochemisch aus MeCpMn(CO)₃ und Ph₂PCH₂CH₂SiHR₂ ($\mathbf{R} = \mathbf{Me}$, Ph) in Petrolether oder Benzol dargestellt werden (Gl. 1).

Die Reaktion lässt sich sehr gut IR-spektroskopisch verfolgen: bereits nach kurzer Bestrahlungsdauer treten im ν (CO)-Bereich zwei neue Banden auf, die den phosphin-Komplexen 1 (in Benzol 1a: 1928s, 1864vs; 1b 1928s, 1883vs) zuzuordnen sind. Im weiteren Verlauf gewinnen Banden bei 1889 (2a) bzw. 1885 cm⁻¹ (2b) an Intensität, vollständige Umsetzung von 1 zu 2 wird allerdings nur durch mehrstündiges Bestrahlen erreicht.

Um sicherzustellen, dass die Reaktion in der in Gl. 1 angegebenen Reihenfolge abläuft, also erst Knüpfung der Mn-P-Bindung und dann Addition der Si-H-Bindung an das Metall erfolgt, haben wir die Phosphin-Komplexe 1 auch durch thermische Umsetzung von MeCp(CO)₂Mn(THF) mit Ph₂PCH₂CH₂SiHR₂ dargestellt. Neben den ¹H-NMR-Spektren (Signale im Si-H- und nicht im Mn-H-Bereich) sprechen vor allem die ³¹P-NMR-chemischen Verschiebungen (δ (P): 1a 89.9, 1b 90.5 ppm, Benzol- d_6) für eine Koordination des Phosphoratoms und nicht der Si-H-Gruppierung an das $MeCp(CO)_2Mn$ -Fragment. Anschliessende Bestrahlung der isolierten Komplexe 1 ergibt ebenfalls 2.

Die Eigenschaften von 2 unterscheiden sich kaum von denen der Komplexe $MeCp(CO)(PR'_3)Mn(H)SiR_3$ mit vergleichbaren PR'_3 - bzw. SiR_3-Liganden [2,3]. Besonders hervorzuheben ist, dass der stabilisierende Einfluss des Phosphin-Liganden gleich oder zumindest ähnlich ist: Während $MeCp(CO)_2Mn(H)SiHEt_2$ bei Raumtemperatur nicht stabil ist und unter H_2SiEt_2 -Eliminierung zerfällt [3], sind sowohl $MeCo(CO)(PR'_3)Mn(H)SiHEt_2$ (Geometrie A) als auch 2a (Geometrie B; vergleichbare Substituenten am Silicium) stabil und gut handhabbar.

Röntgenstrukturanalyse von 2a

Das Ergebnis der Röntgenstrukturanalyse von **2a** ist in den Tab. 1 und 2, sowie in Fig. 1 wiedergegeben.

Die Struktur von 2a weist in ihren Grundzügen die für Komplexe $MeCpL_2Mn(H)SiR_3$ typischen, durch die Mn,H,Si-Dreizentrenbindung geprägten und an anderer Stelle ausführlich diskutierten [3,5] Merkmale auf: (a) Der Si-H-Abstand in 2a (175 pm) ist nur 25-30 pm länger als kovalente Si-H-Bindungslängen in tetraedrischen Silanen (H konnte durch Differenz-Fourier-Synthese lokalisiert und anschliessend verfeinert werden. Seine Position ist daher im Rahmen der mit Röntgenstrukturanalysen erzielbaren Genauigkeit gesichert). (b) Die Bindungswin-

Mn-P	221.2(2)	Si-H	175(4)
Mn-C(30)	214.4(7)	Si-C(2)	188.5(7)
Mn-C(31)	213.1(7)	Si-C(3)	185.6(7)
Mn-C(32)	212.0(7)	Si-C(4)	189.7(7)
Mn-C(33)	214.0(6)	C(4)-C(5)	152.7(9)
Mn-C(34)	213.1(6)	P-C(5)	182.9(6)
Mn-C(1)	175.7(6)	P-C(10)	183.8(6)
Mn-H	153(4)	P-C(20)	184.7(5)
Mn-Si	245.7(2)	C(1)-O	115.6(7)
Mn-Cp	176.4		
Si-Mn-P	77.17(6)	C(2)-Si-H	97.8(14)
Si-Mn-C(1)	113.2(2)	C(2)-Si-C(3)	104.3(3)
Si-Mn-H	44.8(15)	C(2)-Si-C(4)	106.6(3)
P-Mn-C(1)	93.6(2)	C(3)–Si–H	94.8(14)
P-Mn-H	112.9(5)	C(3)-Si-C(4)	105.5(3)
C(1)-Mn-H	84.2(16)	C(4)–Si–H	142.8(14)
Mn–H–Si	97.1(22)	Mn-P-C(5)	109.6(2)
Cp-Mn-Si	119.8	Mn-P-C(10)	116.5(2)
Cp-Mn-P	120.4	Mn-P-C(20)	122.2(2)
Cp-Mn-C(1)	121.2	C(5)-P-C(10)	106.0(3)
Cp-Mn-H	117.0	C(5)-P-C(20)	102.3(3)
Mn–Si–H	38.1(14)	C(10)-P-C(20)	98.3(2)
Mn-Si-C(2)	113.7(2)	Si-C(4)-C(5)	113.8(5)
Mn-Si-C(3)	120.5(2)	P-C(5)-C(4)	106.0(4)
Mn-Si-C(4)	105.2(2)		

TABELLE 1

ABSTÄNDE (pm) UND	WINKEL	(°)	IN	2a	0
------------	---------	--------	----	---	----	-----------	---

^a Cp symbolisiert den Schwerpunkt des Cyclopentadienyl-Rings.

3	
LE	
BEI	
4	

ATOMPARAMETER VON 2a. DER ANISOTROPE TEMPERATURPARAMETER IST DEFINIERT: $T = \exp[-1/4(h^2a^{\star 2}B_{11}^2 + k^2b^{\star 2}B_{22} + l^2c^{\star 2}B_{33} + 2hka^{\star}b^{\star}B_{12} + 2klb^{\star}c^{\star}B_{23}]$; B_{ij} in 10⁴ pm²

Atom	x/a	y/b	z/c	B ₁₁	B_{22}	B ₃₃	B ₁₂	B ₁₃	B ₂₃	1
Mn	0.18686(8)	0.22451(5)	0.05238(5)	3.87(4)	2.25(4)	4.51(4)	- 0.29(3)	1.08(3)	-0.21(3)	1
Si	0.4206(2)	0.14828(9)	0.1010(1)	5.31(8)	2.43(7)	5.83(9)	0.64(6)	1.34(7)	0.56(6)	
C(2)	0.3921(8)	0.0371(4)	0.1079(6)	9.3(4)	3.0(3)	11.1(5)	1.4(3)	3.1(4)	2.7(3)	
C(3)	0.5655(7)	0.1582(4)	0.0355(5)	6.11(3)	4.5(3)	8.6(4)	1.3(3)	2.9(3)	1.3(3)	
C(4)	0.5127(8)	0.1832(4)	0.2253(4)	7.7(4)	4.8(3)	5.5(3)	2.1(3)	0.4(3)	1.1(3)	
C(5)	0.4316(7)	0.2525(4)	0.2580(4)	5.8(3)	4.2(3)	4.2(3)	-0.2(2)	0.7(2)	0.3(2)	
Р	0.3360(2)	0.30691(8)	0.15156(9)	3.96(7)	2.43(6)	3.65(6)	-0.18(5)	0.89(5)	0.01(5)	
C(10)	0.2469(6)	0.3935(3)	0.1916(4)	4.3(3)	3.2(3)	4.0(3)	-0.8(2)	1.5(2)	-0.9(2)	
C(11)	0.1916(7)	0.4535(4)	0.1259(4)	6.7(3)	3.3(3)	6.1(3)	0.3(3)	3.1(3)	-0.5(3)	
C(12)	0.1270(7)	0.5213(4)	0.1505(6)	6.7(4)	3.7(3)	9.2(5)	1.1(3)	3.1(3)	-0.3(3)	
C(13)	0.1166(8)	0.5312(4)	0.2389(7)	6.4(4)	4.1(4)	11.3(6)	-0.1(3)	4.4(4)	-3.1(4)	
C(14)	0.1684(8)	0.4741(5)	0.3046(5)	7.7(5)	8.0(5)	7.0(4)	-1.2(4)	3.8(4)	-4.2(4)	
C(15)	0.2341(7)	0.4031(4)	0.2812(4)	5.9(3)	5.1(3)	5.0(3)	0.2(3)	1.9(3)	-1.0(3)	
C(20)	0.4913(6)	0.3600(3)	0.1209(4)	4.3(2)	1.8(2)	4.4(3)	-0.1(2)	0.9(2)	-0.1(2)	
C(21)	0.5052(6)	0.3642(4)	0.0310(4)	5.0(3)	4.9(3)	4.9(3)	-1.6(3)	0.9(2)	-0.0(3)	
C(22)	0.6230(8)	0.4064(5)	0.0104(5)	6.2(4)	7.8(5)	5.3(3)	- 1.4(3)	2.0(3)	1.1(3)	
C(23)	0.7263(7)	0.4422(4)	0.0796(5)	5.0(3)	4.8(3)	7.6(4)	-1.3(3)	1.9(3)	0.2(3)	
C(24)	0.7148(7)	0.4389(5)	0.1683(5)	6.1(4)	8.1(5)	7.1(4)	-4.1(4)	1.1(3)	-1.9(4)	
C(25)	0.5967(7)	0.3971(4)	0.1892(4)	6.7(4)	7.6(4)	4.8(3)	- 2.8(3)	1.6(3)	-0.5(3)	
C(30)	-0.0412(6)	0.1907(5)	-0.0064(5)	3.6(3)	7.7(5)	6.4(4)	- 1.5(3)	0.8(3)	-0.9(4)	
C(31)	0.0413(8)	0.1247(4)	0.0441(6)	6.6(4)	4.6(4)	9.0(5)	- 3.2(3)	3.6(3)	-2.5(3)	
C(32)	0.0994(7)	0.1459(4)	0.1377(5)	6.1(4)	4.3(4)	8.5(5)	- 1.5(3)	2.4(3)	1.3(3)	
C(33)	0.0520(7)	0.2242(4)	0.1502(4)	5.2(3)	4.5(3)	6.2(3)	-1.2(3)	2.4(3)	-0.8(3)	
C(34)	- 0.0336(6)	0.2510(4)	0.0613(5)	3.7(3)	5.0(3)	7.9(4)	-0.2(2)	1.8(3)	0.4(3)	
C(35)	-0.1286(8)	0.1895(6)	-0.1039(6)	6.1(4)	14.1(8)	8.0(5)	- 2.0(5)	0.9(4)	- 2.1(5)	
C(1)	0.1776(6)	0.2862(4)	- 0.0456(4)	4.0(3)	3.8(3)	4.4(3)	0.5(2)	0.5(2)	- 1.0(2)	
0	0.1580(5)	0.3245(3)	-0.1131(3)	7.3(3)	5.7(3)	5.0(2)	0.7(2)	0.8(2)	1.9(2)	
Н	0.271(4)	0.168(3)	0.003(3)	3.3(10)						

Fig. 1. Ansicht von 2a. Projektion entlang der Mn-C(1)-O-Achse. Die Wasserstoffatome, ausser dem Hydrid-Liganden, wurden der besseren Übersichtlichkeit halber nicht gezeichnet.

kel im CpL₂Mn-Fragment, bei **2a** besonders P-Mn-C(1), entsprechen einer "three-legged piano stool" Geometrie des Komplexes. Das Wasserstoffatom H und der Silylrest sind also keine individuellen Liganden, sondern nehmen zusammen nur eine Koordinationsstelle am Metall ein. (c) Einer der Substituenten am Siliciumatom (bei **2a**: C(4) des Chelatrings) ist koplanar mit Mn, Si und H, d.h. liegt in der Ebene der Dreizentrenbindung. (d) Der SiR₃-Rest ist relativ zum CpL₂Mn-Fragment in der Weise "gekippt", dass sein hypothetisches sp^3 -Orbital, dessen Richtung aus der annähernd C_{3v} -symmetrischen SiC₃-Gruppierung bestimmt werden kann, nicht auf das Mn-Atom, sondern ins Zentrum des aus Mn, H und Si gebildeten Dreiecks gerichtet ist. Der Einbau der Silylgruppe in einen Chelatring unterstützt die dadurch verursachte Verkleinerung des Winkels Mn-Si-C(4).

Im Gegensatz zu bisher bekannten Komplexen $MeCp(CO)(PR'_3)Mn(H)SiR_3$ (Geometrie A) werden bei 2 durch Verwendung von Diphenylphosphinoethylsilyl-Chelatliganden die beiden sperrigen Reste PR'_3 und SiR_3 in Nachbarschaft zueinander gebracht (Geometrie B). Der Molekülbau von 2a erfordert für *cis*-ständige Liganden relativ kleine Bindungswinkel am Mn-Atom, so dass Si-Mn-P nur 77.17° beträgt. In zwei anderen Komplexen mit $Ph_2PCH_2CH_2SiMe_2$ -Chelatliganden, dem quadratisch-planaren $Pt(PPh_2CH_2CH_2SiMe_2)_2$ [6] und dem trigonal-bipyramidalen (CO)₂(Ph₃P)IrPPh₂CH₂CH₂SiMe₂ [7], betragen die Si-Mn-P-Bindungswinkel 82-85°. In 2a passt sich der Metallacyclus durch starke Twist-Konformation der Verkleinerung von Si-Mn-P an: C(4) und C(5) liegen 90.9(7) pm unter bzw. 125.8(6) pm über der aus Mn, Si und P gebildeten Ebene. Möglicherweise als Folge dieser Verdrillung ist in 2a der Si-H-Vektor so orientiert, dass die Winkel Cp-Mn-Si (119.8°) und Cp-Mn-H (117.0°; Cp = Schwerpunkt des Cp-Rings, sh. Tab. 1) etwa gleich gross werden, während er z.B. in MeCp(CO)(PMe₃)Mn(H)SiHPh₂ und anderen Komplexen dieses Typs etwas mit dem Wasserstoffatom vom Cp-Ring weg gedreht ist (Im PMe₃-Komplex: Cp-Mn-Si 117.6°, Cp-Mn-H 125.8° [3]).

Wie wir früher gezeigt haben [3], ist der Mn-Si-Abstand ein besonders guter Indikator für das Ausmass an Bindungs-Delokalisation in Komplexen $CpL_2Mn(H)SiR_3$. Mit zunehmender Si-H-Wechselwirkung verlängert sich Mn-Si sehr stark. In **2a** findet sich mit 245.7(2) pm einer der längsten bisher beobachteten Mn-Si-Abstände, was der Anwesenheit von drei Alkyl-Substituenten am Silicium zuzuschreiben ist. Dicarbonyl-Komplexe $Cp(CO)_2Mn(H)SiR_3$ sind mit R = Alkylbei Raumtemperatur nicht stabil. Die elektronenschiebenden Alkylreste begünstigen die Si-H-Wechselwirkung so stark, dass Eliminierung von HSiR₃ sehr leicht erfolgt. In **2a** übt der Phosphin-Ligand durch Erhöhung der Elektronendichte am Metall einen dazu entgegengesetzten Einfluss aus, so dass ein stabiler Komplex resultiert. Die Kombination beider Effekte führt dazu, dass die Bindungsverhältnisse in **2a** vergleichbar sind mit denen in MeCp(CO)₂Mn(H)SiMePhNp [8] (Mn-Si 246.1(7) pm) oder Cp(CO)₂Mn(H)SiPh₃ [9] (Mn-Si 242.4(2) pm).

Facit

Die bei Komplexen des Typs $MeCp(CO)(PR'_3)Mn(H)SiR_3$ anzutreffende *trans*-Anordnung von Phosphin- und Silyl-Ligand (Geometrie A) dürfte weitgehend auf sterische Ursachen zurückzuführen sein. *Cis*-Anordnung beider Reste kann durch Verwendung von Phosphino-ethylsilyl-Chelatliganden erreicht werden, hat jedoch keine prinzipiellen Auswirkungen auf die Bindungsverhältnisse in derartigen Komplexen.

Experimentelles

Alle Arbeiten wurden in einer von Sauerstoff und Feuchtigkeit befreiten Stickstoff-Atmosphäre durchgeführt. Alle Lösungsmittel wurden nach Standard-Methoden getrocknet und mit Stickstoff gesättigt.

Darstellung von 2a

Eine Lösung von 2.0 g (9.1 mmol) MeCpMn(CO)₃ und 2.5 g (9.1 mmol) Ph₂PCH₂CH₂SiMe₂H [10] in 200 ml Petrolether wird unter Rühren bei 0°C mit UV-Licht bestrahlt (Quecksilber-Hochdrucklampe 180 W der Fa. Heraeus). Es tritt lebhafte CO-Entwicklung ein und die Lösung verfärbt sich hellgelb. IR-spektroskopisch lässt sich feststellen, dass nach ca. 1 h die Bildung von la weitgehend abgeschlossen ist. Es wird noch 7 h weiterbestrahlt (bis die ν (CO)-Bande von 2a bei 1889 cm⁻¹ nicht mehr an Intensität zunimmt). Nach Filtration der Reaktionslösung werden alle flüchtigen Bestandteile im Vak. abgezogen. Das verbleibende zähe Öl wird mehrfach aus Pentan umkristallisiert. Dabei fällt 2a als hellgelbes Pulver an. Ausb. 1.50 g (40%). Fp. 100 °C (Zers.). ¹H-NMR (Benzol) δ 3.9(m, 4H, C₅H₄), $2.1(m, 2H, PCH_2), 1.87(s, 3H, Cp-CH_3), 1.0(m, 2H, SiCH_2), 0.53(d, 6H, SiCH_3),$ -12.8(d, 1H, MnH), ²J(PH) 15 Hz. ³¹P{¹H}-NMR (C₆H₆/C₆D₆) δ 108.9(s). ²⁹Si{¹H}-NMR (C₆H₆/C₆D₆) δ 47.2(d), ²J(PSi) 25.1 Hz. IR (Petrolether) ν (CO) 1889vs cm⁻¹. Massenspektrum (70 eV) m/e 406(14%, $M - CO^+$), 272(6, Ph₂PCH₂CH₂SiMeH), 271(20, Ph₂PCH₂CH₂SiMe₂), 135(29, MeCpMnH), 79(14, MeCp), 72(20, Me₂SiCH₂), 59(10), 57(18), 55(8), 43(100). Gef.: C, 63.25; H, 6.41. C₂₃H₂₈MnOPSi (434.5) ber.: C, 63.58; H, 6.50%.

Darstellung von 2b

Eine Lösung von 0.8 g (3.6 mmol) MeCpMn(CO)₃ und 1.4 g (3.6 mmol) $Ph_2PCH_2CH_2SiPh_2H$ [1] in 250 ml Benzol wird bei +5°C wie bei 2a photochemisch umgesetzt (in Petrolether ist das Phosphinoalkylsilan zu wenig löslich). Nach 19 h Bestrahlungsdauer wird auf 50 ml eingeengt und filtriert. Durch Entfernen aller flüchtigen Bestandteile aus dem Filtrat im Vak. erhält man ein oranges Öl, das an Kieselgel mit Pentan/Benzol (4/1) chromatographiert wird. Die erste, gelbe Zone wird eluiert. Abziehen des Lösungsmittels und Umkristallisieren aus Pentan gibt 0.6 g (31%) 2b. Fp. 46°C (Zers.). ¹H-NMR (Benzol- d_6) δ 4.0(m, 4H, C₅ H_4), 2.3(m, 2H, PC H_2), 1.87(s, 3H, CpC H_3), 1.2 (m, 2H, SiC H_2), -14.0(d, 1H, MnH), ²J(PH) 6 Hz. ³¹P{¹H}-NMR (C₆H₆/C₆D₆) δ 109.7(s). ²⁹Si{¹H}-NMR (C₆H₆/C₆D₆) δ 33.1. IR (Petrolether) ν (CO) 1883 vs cm⁻¹. Gef.: C, 70.21;, H, 5.61. C₃₃H₃₂MnOPSi (558.6) ber.: C, 70.96; H, 5.77%.

Röntgenstrukturanalyse von 2a

Geeignete Kristalle von **2a** wurden durch langsames Abkühlen einer Pentanlösung erhalten. Zellkonstanten: Monoklin, a 928.4(7), b 1672.3(14), c 1471.1(17) pm, β 105.11(7)°, V 2206 × 10⁶ pm³, Raumgruppe $P2_1/c$ (Z = 4), d(ber) 1.31 g cm⁻³. Datensammlung: Mo- K_{α} -Strahlung (λ 71.069 m, Graphit-Monochromator), ω -scan; 3664 unabhängige Reflexe (2° $\leq 2\theta \leq 48°$). Lorentz-, Polarisations- und empirische Absorptions-Korrektur. Strukturlösung: Patterson-Methode. Verfeinerung nach der Methode der kleinsten Quadrate mit der vollständigen Matrix mit anisotropen Temperaturparametern für alle Nicht-Wasserstoffatome. Die Wasserstoffatome wurden teilweise aus Differenz-Fourier-Synthesen erhalten, teilweise nach idealer Geometrie berechnet. Das Wasserstoffatom H (Hydrid-Ligand) wurde aus einer Differenz-Fourier-Synthese erhalten und verfeinert. Die übrigen Wasserstoff-Parameter wurden konstant gehalten. R = 0.068, $R_w = 0.071$ für 3014 Strukturfaktoren ($F_0 \geq 3.92\sigma(F_0)$); $1/w = \sigma^2$. Die Wasserstoffparameter und die Strukturfaktoren können von den Autoren angefordert werden.

Dank

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft unterstützt. Wir danken der Fa. Wacker-Chemie GmbH für Chemikalien-Spenden und Herrn Dr. W. Buchner für die ³¹P- und ²⁹Si-NMR-Messungen.

Literatur

- 1 M. Knorr, J. Müller und U. Schubert, Chem. Ber., im Druck.
- 2 U. Schubert, G. Kraft und C. Kalbas, Trans. Met. Chem., 9 (1984) 161.
- 3 U. Schubert, G. Scholz, J. Müller, K. Ackermann, B. Wörle und R.F.D. Stansfield, J. Organomet. Chem., 306 (1986) 303.
- 4 M. Knorr und U. Schubert, Trans. Met. Chem., 11 (1986) 268.
- 5 U. Schubert, J. Müller und H.G. Alt, Organometallics, im Druck.
- 6 R.D. Holmes-Smith, S.R. Stobart, T.S. Cameron und K. Jochem, J. Chem. Soc., Chem. Commun., (1981) 937.
- 7 M.J. Auburn, S.L. Grundy, S.R. Stobart und M.J. Zaworotko, J. Am. Chem. Soc., 107 (1985) 266.
- 8 F. Carré, E. Colomer, R.J.P. Corriu und A. Vioux, Organometallics, 3 (1984) 1272.
- 9 W.A.G. Graham, J. Organomet. Chem., 300 (1986) 81.
- 10 R.D. Holmes-Smith und S.R. Stobart, J. Chem. Soc., Perkin Trans. I, (1983) 861.